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J4.4 SOURCE INVERSION FOR CONTAMINANT PLUME DISPERSION IN URBAN
ENVIRONMENTS USING BUILDING-RESOLVING SIMULATIONS

Fotini Katopodes Chow1∗, Branko Kosović2, and Stevens T. Chan2

1Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720
2Atmospheric, Earth and Energy Department, Lawrence Livermore National Laboratory, Livermore, CA 94551

1 Introduction and background
Flow in urban environments is complicated by the pres-
ence of buildings, which divert the flow into often unex-
pected directions. Contaminants released at ground level
are easily lofted above tall (∼ 100 m) buildings and chan-
neled through urban canyons that are perpendicular to
the wind direction (see e.g., IOP 9 in Chan, 2005). The
path of wind and scalars in urban environments is diffi-
cult to predict even with building-resolving computational
fluid dynamics codes, due to the uncertainty in the synop-
tic wind and boundary conditions and other errors in the
models.

Given the difficulties due to the complexity of urban
flows, solving an inverse problem becomes quite chal-
lening. That is, given measurements of concentration
at sensors scattered throughout a city, is it possible to
detect the source of the contaminant? The ability to lo-
cate a source and determine its characteristics in a com-
plex environment is necessary for emergency response
for accidental or intentional releases of contaminants in
densely-populated urban areas. The goal of this work
is to demonstrate a robust statistical inversion procedure
that performs well even under the complex flow conditions
and uncertainty present in urban environments.

Much work has previously focused on direct inversion
procedures, where an inverse solution is obtained us-
ing an adjoint advection-diffusion equation. The exact
direct inversion approaches are strictly limited to pro-
cesses governed by linear equations. In addition, they
assume the system is steady-state and that the equa-
tions are linear (Enting, 2002). In addition to adjoint mod-
els, optimization techniques are also employed to obtain
solutions to inverse problems. These techniques often
give only a single best answer, or assume a Gaussian
distribution to account for uncertainties. General dis-
persion related inverse problems, however, often include
non-linear processes (e.g., dispersion of chemically re-
acting substances) or are characterized by non-Gaussian
probability distributions (Bennett, 2002). Traditional meth-
ods also have particular weaknesses for sparse, poorly-
constrained data problems, as well as in the case of high-
volume, potentially over-constrained and diverse data
streams.

We have developed a more general and powerful in-
verse methodology based on Bayesian inference cou-
pled with stochastic sampling. Bayesian methods refor-
mulate the inverse problem into a solution based on effi-
cient sampling of an ensemble of predictive simulations,
guided by statistical comparisons with observed data.
Predicted values from simulations are used to estimate
the likelihoods of available measurements; these likeli-
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hoods in turn are used to improve the estimates of the
unknown input parameters. Bayesian methods impose
no restrictions on the types of models or data that can
be used. Thus, highly non-linear systems and disparate
types of concentration, meteorological and other data can
be simultaneously incorporated into an analysis.

In this work we have implemented stochastic models
based on Markov Chain Monte Carlo sampling for use
with a high-resolution building-resolving computational
fluid dynamics code, FEM3MP. The inversion procedure
is first applied to flow around an isolated building (a cube)
and then to flow in Oklahoma City (OKC) using data col-
lected during the Joint URBAN 2003 field experiment (All-
wine, 2004). While we consider steady-state flows in this
first demonstration, the approach used is entirely general
and is also capable of dealing with unsteady, nonlinear
governing equations.

2 Reconstruction procedure

2.1 Bayesian inference and Markov
Chain Monte Carlo

The inversion or reconstruction algorithm uses Bayes’
theorem combined with a Markov Chain Monte Carlo
(MCMC) approach for stochastic sampling of unknown
parameters (see e.g., Gelman et al., 2003). A brief de-
scription is given here; more details can be found in Jo-
hannesson et al. (2004) Bayes theorem is written

p(X|Y ) =
p(Y |X)p(X)

p(Y )
∝ p(Y |X)p(X) (1)

where X represents possible model configurations or pa-
rameters and Y is observed data. For our application,
Bayes theorem therefore describes the conditional prob-
ability (p(X|Y )) of a certain source location and release
rate (the model configuration, X) given observed mea-
surements of concentration at sensor locations (Y ), also
known as the posterior distribution. This conditional prob-
ability p(X|Y ) is related to p(Y |X), the probability of
the data conforming to a given model configuration, and
p(X), the possible model configurations before taking into
account the measurements. p(Y |X), for fixed Y , is called
the likelihood function, while p(X) is the prior distribution.
In this application, we initially assume that the source
could be located anywhere in the whole domain, so the
prior distribution is uniform (though we in effect limit the
prior by choosing our domain boundaries). The proba-
bility p(Y ) distribution is called the prior predictive distri-
bution (Gelman et al., 2003) and represents a marginal
distribution of Y

p(Y ) =

∫

p(X)p(Y |X)dX (2)



For a general problem where analytical solutions are not
possible, the challenge is in computing the likelihood
function. For that purpose we use a stochastic sam-
pling procedure and approximate the posterior distribu-
tion (p(X|Y )) by the empirical distribution function

π(X) =

N
∑

i=1

(1/N)δ(Xi − X) (3)

Here, δ(Xi − X) = 1 when Xi = X and 0 otherwise.

2.2 Sampling procedure
We use a Markov Chain Monte Carlo procedure with the
Metropolis-Hastings algorithm to obtain the posterior dis-
tribution of the source term parameters given the concen-
tration measurements at sensor locations. The Markov
chains are initialized by taking samples from the prior dis-
tribution. To lower the computational cost, we limit the
prior distribution to the ground surface (thus ignoring the
possibility of elevated sources). All buildings (virtual and
real) are also excluded from the prior distribution.

A forward dispersion calculation is performed to pro-
vide the initial data for comparison with observed data
at sensors. Then the Metropolis-Hastings sampling algo-
rithm is used to advance the Markov chains. A sample
is taken from a specified Gaussian proposal distribution
centered at the current chain location and likewise from
a Gaussian proposal distribution for the source strength.
A forward calculation is performed for the proposal with
these new parameters and results are compared to mea-
surements at the concentration sensors. If the compar-
ison is more favorable than the previous chain location,
the proposal is accepted, and the Markov chain advances
to the new location. If the comparison is worse, the pro-
posal is not automatically rejected. Instead, a random
(Bernoulli) “coin flip” is used to decide whether or not to
accept the new state. This random component is impor-
tant because it prevents the chain from becoming trapped
in a local minimum where comparisons are more favor-
able than values in the local sampling area but where the
chain has not converged on the true source location or
release rate.

Each Markov Chain path is determined using this algo-
rithm at each step, as given in detail in Table 1. Mul-
tiple chains are used (typically four) to allow for better
statistical sampling of the parameter space. Statistical
convergence to the posterior distribution is monitored by
computing between-chain variance and within-chain vari-
ance. If there are m Markov chains of length n then we
can compute between-chain variance B and within-chain
vairiances W as:

B =
n

m − 1

m
∑

j=1

(Xj − X)2 (6)

where

Xj =
1

n

n
∑

i=1

Xij (7)

and

X =
1

m

m
∑

j=1

Xi (8)

Table 1: Metropolis-Hastings algorithm used for
sampling and advancement of Markov Chains in in-
version procedure.

• Given current state Xi draw a new candidate state
X̃ from the proposal distribution T (X̃, Xi).

• Compute acceptance ratio as

ρ(X̃, Xi) =
π(X̃)T (Xi|X̃)

π(Xi)T (X̃|Xi)
(4)

• Compute acceptance probability α(X̃, Xi) as

α(X̃, Xi) = min
(

ρ(X̃, Xi), 1
)

(5)

• Draw u from uniform distribution U [0, 1] and update
the state Xi+1

Xi+1 = {
X̃ if u ≤ α(X̃ ; Xi)

Xi otherwise

W =
1

m

m
∑

j=1

s2
i (9)

and

s2
i =

1

n − 1

n
∑

j=1

(Xij − Xi)
2 (10)

One estimate of variance of X is computed as

var(X) =
n − 1

n
W +

1

n
B (11)

The convergence parameter R, is then computed as a
function of two estimates of variance

R =
var(X)

W
(12)

The necessary condition for statistical convergence to the
posterior distribution is that R approaches unity.

2.3 Source strength scaling
Typically the MCMC sampling requires thousands of iter-
ations (samples) to converge to the posterior distribution,
thus requiring thousands of forward dispersion model cal-
culations. With simple Gaussian puff models (Johannes-
son et al., 2004) it is possible to calculate the forward
models on the fly. With a three-dimensional CFD model,
the computational cost quickly becomes prohibitive even
for the simplest cases. For the current applications, we
have simplified the situation by considering only steady-
state flow conditions. (The methodology remains com-
pletely general and can handle unsteady flows.) By
assuming that the advection-diffusion problem is linear
(e.g., no chemical reactions) we can use the precom-
puted steady flow field and Green’s funcions to carry out
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one forward simulation at each of the thousands of loca-
tions in our prior distribution using a unit source strength
and store the resulting values at the sensor locations in a
database. The stored concentrations can be rescaled de-
pending on the proposed source release rate for a partic-
ular source location. Thus, during the inversion process,
the dispersion results from each possible source location
are obtained from the database and rescaled according
to the current sampled value for the source strength. In
this way, 20 000 iterations for each of four Markov chains
can be performed in less than five minutes of computa-
tional time on two processors.

2.4 Forward model description -
FEM3MP

The stochastic inversion procedure relies on a forward
model to calculate instances of predicted sensor mea-
surements, Y , for given source term parameters, X.
Here we use FEM3MP (Gresho and Chan, 1998; Chan
et al., 2001), a three-dimensional, incompressible Navier-
Stokes finite-element code able to represent complex ge-
ometries and simulate flows in urban environments (Chan
and Leach, 2004; Chan, 2005).

For flow around the isolated building, the model is
driven by a steady logarithmic inflow profile at the up-
stream (west) boundary. Natural (i.e. zero tangential and
normal stress) outflow boundary conditions are applied at
the other boundaries. The steady-state flow field is pre-
computed and is used to drive dispersion from a source
with a constant release rate until a steady-state concen-
tration field is obtained. The grid resolution is uniform far
from the building, and is doubly fine in the region closest
to the building (see Fig. 3 later).

For the Oklahoma City simulations, we use a setup
similar to Chan (2005) for the third intensive observa-
tion period (IOP3) from Joint URBAN 2003. Again, the
flow field is assumed steady, with a logarithmic inflow pro-
file on the southern boundary with magnitude 6.5 m/s at
z = 50 m and a wind direction of 185◦ (south). The flow
field is pre-computed using FEM3MP. The release rate is
constant and simulations are performed until steady-state
concentration fields are achieved (after about 10 minutes
of simulation time). The atmosphere is assumed to be
neutrally stratified since shear production of turbulence
is significantly larger then buoyant production. Buildings
near the source are explicitly resolved; i.e. the finite ele-
ment grid lines up with the buildings (see Fig. 9 later). Far
from the source, “virtual buildings” are used to reduce the
computational cost. In this region, drag is added to the
grid cells falling within the building boundaries. Previous
work has shown that this approach produces satisfactory
dispersion estimates far from the source (Chan, 2005).

3 Isolated building example
We have developed a prototype example of event re-
construction for a flow around an isolated building (a
cube) with a source located upwind from the building (see
Fig. 1). Four sensors are placed in a diamond-shaped
array in the lee of the building. Data at the sensor loca-
tions is collected using a forward simulation from the true
source location. The data is thus “synthetic” and used

in this case only to test the inversion algorithm. Artificial
measurement error with a standard log-normal distribu-
tion is also added to the synthetic data (in this case with
mean µ = 0 and standard deviation σrel = 0.05).

The source release rate was set to 0.1 (nondimen-
sional units). As can be seen from Fig. 1 the actual
source is located just above the symmetry line. Because
the symmetry line is also the separatrix of this flow, this
small deviation of the source location from the line of
symmetry results in significant asymmetry in the result-
ing plume (Fig. 1). This example, while simple in ge-
ometry, thus incorporates complexities due to its three-
dimensional nature that were not accounted for in pre-
vious inversion studies. The asymmetry of the plume
is generated purely by the presence of the building.
More simplistic dispersion models do not explicitly resolve
buildings and hence cannot capture such features (Britter
and Hanna, 2003).
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Figure 1: Horizontal concentration contours at the
first vertical level generated by forward simulation
with FEM3MP for flow around an isolated building
(gray shading). Four sensors are placed in the lee
of the building (diamonds). The source is indicated
by the magenta square.

The domain is discretized using about 19 000 elements
(42,32,14). For the purposes of this example, the prior
distribution is limited to a region upwind of the sensors
to reduce computation time. Forward runs are computed
for all possible locations and concentrations values at the
sensors are stored in a database for each grid locations.
Total computation time for generation of the database was
6 hours using 64 2.4 GHz Xeon processors. The recon-
struction or inversion algorithm proceeds as usual, but
instead of running a new simulation for each proposed
Markov chain step, the results are drawn from the con-
centration database, as described previously. This avoids
repeated computations of releases at the same x, y loca-
tions by simply scaling the release rate as dictated by the
sampling algorithm.
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3.1 Source inversion

Figure 2 shows the paths taken by the four Markov
chains. The chains quickly converge on the source loca-
tion, sampling more frequently in the northern half of the
domain as expected due to the asymmetry of the actual
plume. The probability distribution for the source location
is given in Fig. 3, which also reflects the asymmetry of
the actual concentration plume. The peak of the distribu-
tion occurs just upwind of the actual source location. If
the error from the measurements is set to zero, the in-
version procedure accurately predicts the source location
as expected (i.e. the peak of the probability distribution
matches the true source; not shown). The probability
distribution is constructed using the second half of the
MCMC iterations (i.e. 10 000 to 20 000), to allow the
Markov chains to “mix” adequately to improve the statis-
tical distribution and to exclude the random initialization
from the final statistics. Thus, the so-called “burn-in” time
is 10 000 iterations.
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Figure 2: Paths of four Markov chain used for
source inversion for flow around an isolated build-
ing. Black diamonds show sensor locations.
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Figure 3: Probability distribution of source location
for flow around an isolated building.

The corresponding probability distribution for the
source release rate is shown in Fig. 4. The peak of the
histogram coincides with the actual release rate of 0.1.
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Figure 4: Histogram of source strengths for flow
around an isolated building. Vertical blue line shows
actual release rate.

Convergence rates for the x, y and q inversions are
shown in Fig. 5. All convergence measures reach a value
near 1.1 after about 10 000 iterations, indicating that the
sampling procedure was thorough and adequate to gen-
erate a meaningful posterior probability distribution. Note
that the convergence rate is independent of the spread
in the distribution, and merely indicates that further sam-
pling will not change the results. We are thus able to
successfully invert this idealized three-dimensional dis-
persion problem and determine the source location and
release rate to within a tight confidence region.
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Figure 5: Convergence rates for horizontal position
(x, y) and source strength q for flow around an iso-
lated building.
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3.2 Composite plume

In addition to probabilistic predictions of the source loca-
tion, emergency responders need predictions of concen-
trations over the entire plume area. A “most likely plume”
could easily be constructed by performing a forward sim-
ulation from the peak of the probability distribution for the
source location. This, however, would be one realization
and would not contain the probabilistic information inher-
ent in the reconstruction procedure.

We therefore construct a probabilistic, composite
plume, from the plume realizations corresponding to all
the samples from the posterior probability distribution of
source term parameters. The composite plume is ob-
tained by first creating histograms of concentration val-
ues at each spatial location in the domain. This step is
followed by determining the concentration value at each
location for which a certain pre-specified probability is ex-
ceeded. Contours of the 90% confidence interval are
shown in Fig. 6. For values above the threshold (chosen
to be 0.03), the plot shows 90% confidence that the con-
centration at a given location is higher than the contoured
value. For values below the threshold, the contours indi-
cate 90% confidence that the concentration is less than
the contoured value.
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Figure 6: Composite plume showing 90% con-
fidence intervals for concentration levels for flow
around an isolated building. The threshold is set
at 0.03. For concentrations above the threshold,
there is 90% confidence that the concentration is
higher than the contoured value. For values below
the threshold, there is 90% confidence that the con-
centration is less than the contoured value. White
regions indicate that a 90% confidence interval can-
not be established.

The shape of this composite plume is quite different
from that of the actual plume (Fig. 1). The composite
plume represents a probabilistic estimate of concentra-
tions and could aid in emergency response decisions for
evacuation or sheltering in place depending on a chosen
confidence interval and whether an area lies above or be-
low a threshold value for toxicity.

4 Oklahoma City - Joint URBAN
2003 IOP 3

The OKC domain includes the central business district,
with a maximum building height of 120 m and an aver-
age building height of 30 m. Figure 7 shows the com-
plexity of the wind flow in the downtown area generated
using FEM3MP with constant inflow boundary conditions
on the southern edge of the domain. Comparisons of
dispersion results are made to 30-min averages of con-
centration measured at fifteen sensors within this domain.
The domain is discretized using about 580 000 elements
(132,146,30). The prior distribution is limited to a slightly
smaller domain (x = [−150, 130], y = [80, 410]) to reduce
computation time. In addition, the cell spacing was effec-
tively doubled by only considering sources in every other
grid cell in a checkerboard pattern. Total computation
time for 2560 forward runs (from each possible source lo-
cation in the concentration database) was over 12 hours
using 1024 2.4 GHz Xeon processors (equivalent to 17
days on 32 processors). Each forward run of FEM3MP
simulataneously calculated 20 different source locations,
requiring 128 different launches of the model. Each in-
stance of the model used 32 processors. After generation
of the database, the inversion process itself requires only
five minutes of computation time on two processors.
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Figure 7: Surface wind vectors (every third point
shown in each direction) and contours of velocity
magnitude predicted by FEM3MP for flow in the
central business district of Oklahoma City during
IOP 3 of the Joint URBAN 2003 field experiment.
Buildings are indicated with various shades of gray.

4.1 Source inversion
Figure 8 shows the location of buildings and sensors in
the downtown OKC area, together with four Markov chain
paths. The chains quickly converge from four random ini-
tial locations to the general vicinity of the actual source lo-
cation where they spend the remainder of their time sam-
pling the parameter space and refining the probability dis-
tribution. Using the Markov chain paths, we construct the
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probability distribution for the source location, as shown
in Fig. 9. The peak of the distribution is located approx-
imately 70 meters south of the actual source location.
Reasons for this will be discussed below. The accom-
panying release rate histogram is given in Fig. 10. The
peak of the distributions falls between 0.003 and 0.004
kg/kg, while the actual source strength was 0.005 kg/kg.
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Figure 8: Paths of four Markov chain used for
source inversion for flow in Oklahoma City during
IOP 3. Black diamonds show sensor locations.
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Figure 9: Probability distribution of source location
for flow in OKC during IOP 3.

Figure 11 shows convergence rates for x, y and q dur-
ing the 20 000 iterations of the inversion procedure for
OKC IOP3. The values for x and q converge after 10 000
iterations and only change slightly after that. The value
for y is more difficult to pinpoint in the inversion process.
Here y is the stream-wise direction, where a change in
the distance to the source can sometimes be accommo-
dated by a corresponding change in release rate. That is,
a weaker source closer the sensor can sometimes pro-
duce similar results to a stronger source further away.
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Figure 10: Histogram of source strengths for flow in
OKC during IOP 3. Vertical blue line shows actual
release rate.

Therefore, a value of R = 2 for the y location of the source
can be considered acceptable.
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Figure 11: Convergence rates for horizontal posi-
tion (x, y) and source strength q for flow in OKC dur-
ing IOP 3.

A closer look at the individual plumes predicted by dif-
ferent source locations gives insight into the location of
the peak of the x, y probability distribution. Figure 12
shows the plume predicted by FEM3MP for a source at
the actual source location for IOP3 with the actual release
rate. Contours of concentrations predicted by FEM3MP
are shown together with small squares at the sensor lo-
cations colored according to the observed concentrations
during IOP3. Figure 13 shows the plume from the in-
verted source location, i.e. the peak of the x, y probabil-
ity distribution for the source location. While the general
plumes predicted by the code seem reasonable, there are
clearly discrepancies between the predicted concentra-
tions and observations for both simulated plumes. These
can be seen more clearly in a one-to-one comparison of
observed and modeled values at the 15 sensor concen-
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trations, as seen in Fig. 14. The inverted source location
was determined by minimizing the absolute error between
modeled and observed values. The sum of the absolute
errors (Fig. 15) at the sensor locations is smaller using
the inverted source location (∼ 1090 ppb total) than the
true source location (∼ 2860 ppb total).
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Figure 12: Concentration plume predicted by
FEM3MP with observations (small squares colored
by concentration value) for actual source location
(small black square) and release rate for OKC IOP
3.
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Figure 13: Concentration plume predicted by
FEM3MP with source location at peak of recon-
structed probability distribution (small black square)
compared to observations for OKC IOP 3.

4.2 Treatment of model errors
The inversion procedure clearly relies heavily on the ac-
curacy of the sensor measurements as well as the accu-
racy of the forward model used for dispersion simulations.
While the FEM3MP code has been validated for many ur-
ban flows, there are several possible sources of error. To
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Figure 14: Scatter plot of FEM3MP predictions vs.
observed concentrations at the 15 sensor locations
for actual and inverted source locations.

obtain a good probabilistic distribution for the source lo-
cation and strength, all sources of error must be included
a priori.

There are several reasons for the mismatch in pre-
dicted and observed concentrations. First of all, there
are uncertainties in the lateral boundary conditions pre-
scribed in the simulation. Steady inflow has been speci-
fied for the inflow boundary, whereas in reality the wind
at the domain boundary has fluctuations in space and
time. A slight change in mean wind direction can also
greatly affect dispersion results. Chan and Leach (2004)
demonstrated that time-varying inflow boundary condi-
tions significantly changed the concentration plume in
simulations of dispersion in Salt Lake City. In addition,
the domain size used for these simulations is smaller than
that of Chan (2005) (to save computation time) which per-
haps increases the influence of the boundaries. We also
use a simplified linear eddy-viscosity turbulence model,
whereas Chan (2005) uses a non-linear eddy-viscosity
model which gives better agreement with the data but at
a much higher computational cost. Results from Chan
(2005) are reproduced in Fig. 16. The non-linear eddy-
viscosity model better represents dispersion in regions of
building-induced turbulence, hence giving better agree-
ment with observed concentrations.

Another source of error is in the specification of the
source term in the simulation. While the tracer gas was
released from a point source in the experiment, the model
distributes the source over a grid cell, where the verti-
cal injection velocity and concentration are specified at
the boundary to match the release rate from the experi-
ment. This yields a steady concentration flux over the grid
cell but creates numerical oscillations (see region near
the source in Fig. 12) in the neighboring cells due to the
strong concentration gradients and inherent limitations of
the numerical scheme.

It is difficult to quantify the individual contributions of
the multiple sources of error in FEM3MP. Model errors
are therefore incorporated into the inversion process in a
lump sum fashion by adjusting σrel of the standard log-
normal distribution, the relative error allowed in the com-
parison between different realizations of the simulation
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Figure 15: Absolute error of FEM3MP predictions
compared to observed concentrations at the 15
sensor locations for actual and inverted source lo-
cations.

and the observed values. For the OKC simulations, σrel

was set to the relatively high value of 0.5.

4.3 Composite plume
We again construct a probabilistic, composite plume, rep-
resenting the probability of concentration at a specific lo-
cation being higher or lower than a certain value. Due to
memory limitations in the post-processing step, only the
final third of the iterations are used to construct the com-
posite plume (as opposed to the second half of iterations
used for the flow around the isolated building). Contours
of the 90% confidence interval are shown in Fig. 17 with
the threshold chosen at 100 ppb. Again we note that the
shape of this composite plume is quite different from any
individual realization or plume prediction such as those
shown in Figs. 12 and 13.

5 Discussion and conclusions
Our stochastic methodology for source inversion is based
on Bayesian inference combined with a Markov Chain
Monte Carlo sampling procedure. The stochastic ap-
proach used in this work is computationally intensive but
the method is completely general and can be used for
time-varying release rates and flow conditions. The re-
sults of the inversion, specifically the shape and size of
the posterior probability distribution, indicate the proba-
bility of a source being found at a particular location with
a particular release rate, thereby inherently reflecting un-
certainty in observed data or the data’s insufficiency with
respect to quality, spatial, or temporal resolution.

We have demonstrated successful inversion of a pro-
totype problem with flow around an isolated building. Ap-
plication to the complex conditions present during IOP 3
of the Joint URBAN 2003 experiment in Oklahoma City
also proved successful. Despite the many sources of
error present in the CFD model (FEM3MP) used during

Figure 16: Concentration plume from Chan (2005)
predicted by FEM3MP with larger grid and more
advanced turbulence model compared to obser-
vations (small squares colored by concentration
value) for actual source location and release rate
for OKC IOP 3.

the inversion procedure, the peak of the probability dis-
tribution for the source location was within 70 m of the
true source location, and the actual source location was
contained within the probability distribution. A compos-
ite plume showing concentrations at the 90% confidence
level was created using plume predictions from the re-
alizations given by the reconstructed probability distribu-
tion. This composite plume contains probabilistic infor-
mation from the iterative inversion procedure and can be
used by emergency responders as a tool to determine
the likelihood of concentration at a particular location be-
ing above or below a threshold value.

Future work will include investigation of source inver-
sion using a smaller subset of the 15 sensors available
during the OKC IOP 3 experiment. Unsteady releases
and unsteady flow conditions will also be considered. Fi-
nally, meteorological uncertainty will be incorporated to
allow for errors induced by lack of sufficient information
at the lateral boundaries such as errors in the specified
mean wind direction.
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